Chapter 7
End-to-End Data

Prof. Tsali

End-to-End Data

 Discuss the problem of how to best encode different kinds of
data that application programs want to exchange

— Let the receiver be able to extract the same message from
the signal as the transmitter sent

» The two sides agreeing to a message format, called
thg presentation format

« To make the encoding as efficient as possible

— In one hand, add as much redundancy in the data as
possible = The receiver can extract the right data even if
errors are introduced into the message (error correction)

— In the other hand, remove as much redundancy from the
data as possible = the message Is encoded as few bits as
possiblel (data compression)

Prof. Tsai 2

Presentation Formatting

Prof. Tsali

Presentation Formatting

» Encoding: the sender translates the data from the
representation it uses internally into a message that can be
transmitted over the network (argument marshalling)

— Such as “Image = Message” or “Voice = Message”

» Decoding: the receiver translates the arriving message into a
representation that it can then process (unmarshalling)

— Such as “Message = Image” or “Message = \Voice”
Application data Application data

Prof. Tsali 4

Presentation Formatting (Problems)

« Computers represent data in different ways
— Big-endian form versus little-endian form
« Application programs are written in different languages

— Even when they are using the same language, there may
have more than one complier

= We cannot simply transmit a structure from one machine to

another _
High— (17) Gy (126 —OW
Big-endian [00000010|00010004,00100010 01111110
Integer Low < High
34677374 (126) (34) (17) (2)

Little-endian {01111110|0010001300010001j00000010
Low address T High address

Prof. Tsali 5

Data Types

« The data type system includes three levels

» The lowest level: base types, including integers, floating-
point numbers and characters; might also support ordinal
types and booleans

— Converts each base type from one representation to
another (such as from big-endian to little-endian)

* The next level: flat types, including structures and arrays
— The compiler sometimes insert padding between fields
— The marshalling system packs structures with no padding
« The highest level: complex types, built using pointers

— The data might not be contained in a single structure
(involves pointer from one structure to another)

Prof. Tsali 6

Data Types

« The task of argument marshalling usually involves
— Converting the base types,
— Packing the structures, and
— Linearizing the complex data structures

. Application data structure

EEEE
'

Argument marshaller

'
I I

Prof. Tsali 7

Conversion Strategy

« There are two general options of conversion strategy
« Canonical intermediate form:

— The sender translates from its internal representation to
an external representation before sending data

— The receiver translates from this external representation
Into its local representation when receiving data

* Receiver-makes-right:
— The sender transmit data in 1ts own internal format

— The receiver is responsible for translating the data from
the sender’s format into its local format

— Every host must be prepared to convert data from all
other machine architectures

Prof. Tsai 8

Conversion Strategy

» Receiver-makes-right is an N-by-N solution

— Each of N machine architectures must be able to handle
all N architectures

« For canonical intermediate form, each host needs to know
only how to convert between its own representation and the
external one

* |s the canonical intermediate form the best choice?
— The number of machine architectures N is not so large

— The most common case is for two machines of the same
type to be communicating with each other

« Athird option is to use receiver-makes-right if the sender
and destination has the same architecture, and use
canonical intermediate form if they are different

Prof. Tsali 9

Tags
« How to let the receiver know what kind of data is contained
In the message?
— Two approaches: tagged and untagged data

« Atag Is any additional information included in a message

— Type tag: indicates that the value is an integer, a floating-
point number, or whatever

— Length tag: indicates the number of elements in an array
or the size of an integer

— Architecture tag: is used in conjunction with the
receiver-makes-right strategy to specify the architecture

| | |
len =4 value = 417892

type =
INT

Prof. Tsai 10

Tags

« The alternative Is not to use tags
— It knows because it was programmed to know

— If you call a remote procedure that takes two integers
and a floating-point number as argument

« The remote procedure does not need to inspect tags to
know what has just received

« It simply assumes that the message contains two
Integers and a floating-point number

« The untagged data works for most cases
— Only breaks down for sending variable-length arrays
A length tag is commonly used

Prof. Tsali 1

ASN.1 (Abstract Syntax Notation One)

« ASN.1isan ISO standard that defines a representation for
data sent over a network

— Support the entire C type system (except function pointers)
— Define a canonical intermediate form
— Uses type tags

« The representation-specific part is called the Basic Encoding
Rules (BER)

« ASN.1 represents each data item with a triple of the form
<tag, length, value>
— The tag is typically an 8-bit field
— The length field specifies the length, in bytes, of the value

Prof. Tsai 12

ASN.1 (Abstract Syntax Notation One)

/ « Compound data types, such as structures, can be

constructed by nesting primitive types

 |If the value is 127 or fewer bytes long, then the length is
specified in a single byte (the leading bit is set to ‘0’)

 |f the value is 128 or more bytes long, then multiple bytes
are used to specify its length (the leading bit 1s set to 1)

type |length | type |length [=— value—| type | length [~—value—>

- value -

A 32-bit integer | INT | 4

:4—byte :integer:

‘O ilengthl 1 . K | k contlaining iength I
1 byte length Multi-byte length
Prof. Tsai

13

Data Compression

Prof. Tsali

Compression

« How many bits do you need to represent a stream of binary
digits or a stream of alphabets?

— 11001101111000111100011000011111....

— Aabsndkjs dsjfjfdfjfjk fsdkja fas dsjfs aff ...
» Entropy: the average number of bits needed for each symbol.
 Information theory: to find the fundamental limit

« Coding theory: to find ways to achieve the fundamental
limit

Prof. Tsai 15

suppose that X, Xo,..., X,,,... are 1.1.d. random variables
There are a set of symbols X, S¢, 51,... S, ... with

P(X1 = Sk) — Dk
The entropy is defined as

H(X)=—) pilogps.
keXx

Prof. Tsai 16

Entropy for Bernoulli random variables

1

0.5

H(X)

Pr(X = 1)

Prof. Tsali 17

Data Compression

« Sometimes application programs need to send more data in a
timely fashion than the bandwidth of the network supports

— A 10-Mbps video stream wants to transmit over a network
with 1-Mbps available bandwidth

— First compress the data at the sender, then
— Transmit it over the network, and
— Finally to decompress It at the receiver
« Compression is inseparable from data encoding
— The Huffman codes

« Encode the data according to the relative probability of
each symbol

Prof. Tsai 18

Huffman encoding algorithm

First one parses through the stream of alphabets to find the
probability of each symbol.

Combine the two least probable source symbols into a new single
symbol, whose probability is equal to the sum of the probabilities of
the original two. Thus we have to encode a new source alphabet of
one less symbol. Repeating this step until we get down to the
problem of encoding just two symbols in a source alphabet, which
can be encoded merely using 0 and 1.

Go backward by splitting one of the two (combined) symbols into
two original symbols, and the codewords of the two split symbols is
formed by appending 0 for one of them and 1 for the other from the
codeword of their combined symbol. Repeating this step until all the
original symbols have been recovered and obtained a codeword.

19

Huffman Coding

« A high probability symbol is assigned a short codeword
« A low probability symbol is assigned a long codeword

Symbol Stage 1

S, 0.4
S, 0.2
S, 0.2
s, 012

s, 011

Stage 2

0.4
0.2

0.2.9
0.2-1

Stage 3

0.4\

0.4.0

Stage 4
—0.6.0

\0.43

0.2]_

Symbol Codeword
S, 00
S, 10
S, 11
S, 010
S, 011

Prof. Tsali

20

The tree of the Huffman encoding

Prof. Tsali

21

Data Compression

« There are two classes of compression algorithms

— Lossless compression: ensures that the data recovered
from the compression/decompression process is exactly
the same as the original data

« Used to compress file data, such as executable codes,
text files and numeric data

— Lossy compression: does not promise that the data
received Is exactly the same as the data sent

« Removes information that it cannot later be restored
« The lost information will not miss the reception
« Used to compress still images, video, and audio
» The lossy algorithms achieve much better compression ratios

Prof. Tsai 22

The rate-distortion theory

« Lossy compression always
Involves a tradeoff between rate
and distortion. -

R(D)

« Rate is the average number of ;-
bits required to represent each
source symbol.

« Within this framework, the
tradeoff between rate and
distortion is represented in the

form of a rate-distortion
function R(D).

Prof. Tsai

23

Data Compression

« Compression/decompression algorithms often involve time-
consuming computations

* |s the compression beneficial?

— B,: denotes the average bandwidth at which data can be
pushed through the compressor and decompressor

— B,,: denotes the network bandwidth (including network
processing costs) for uncompressed data

— I denotes the average compression ratio

— The time taken to send x bytes of uncompressed data is
X/ B,

Prof. Tsai 24

Data Compression

— The time to compress it and send the compressed data is
e compression time + transmission time
e X/B,+x/(rB,)
— The compression is beneficial if
X/IB,+x/(rB,) <x/B,
=>B.>r/(r-1) xB,
—1fr=2,B,>2xB,

Prof. Tsai 25

Lossless Compression

Prof. Tsali

Lossless Compression Algorithms (RLE)

* Run Length Encoding (RLE) i1s a compression technigue
with a brute-force simplicity

— Replace consecutive occurrences of a given symbol with
« one copy of the symbol, plus a count of the repetition
— AAABBCDDDD —» 3A2B1C4D

* RLE can be used to compress digital image by comparing
adjacent pixel values and then encoding only the changes

— Same adjacent pixel values = the encoding value is ‘0’

— Large homogeneous regions = a large amount of
consecutive ‘0’

— For images having large homogeneous regions =
effective

Prof. Tsai 27

Lossless Compression Algorithms (RLE)

« For text images, they contain a large amount of white space
that can be removed

— RLE Is a key algorithm used to transmit faxes

» RLE is not effective for images with a small degree of local
variation

— It may takes 2 bytes to represent a single symbol when
that symbol is not repeated

Prof. Tsai 28

Lossless Compression Algorithms (DPCM)

 Differential Pulse Code Modulation (DPCM):
— First output a reference symbol and then,

— For each symbol, to output the difference between that
symbol and the reference symbol

— AAABBCDDDD — takes A as the reference
« A0001123333

« When the differences are small, they can be encoded with
fewer bits than the symbol itself

Prof. Tsai 29

Lossless Compression Algorithms (DPCM)

« DPCM works better than RLE for most digital image

— The dynamic range of “the differences between adjacent
pixel values” is significantly less than that of the original
Image

— A compression ratios of 1.5-to-1 can be obtained on
digital images

 Another approach is delta encoding:

(\I\(\(\,N\.{\N\
— AAABBCDDDD — A001011000

|t is possible to perform RLE after delta encoding

— Since the output generally has consecutive occurrences of
a given symbol

Prof. Tsai 30

Lossless Compression Algorithms (DB)

« For Dictionary-Based (DB) methods, the Lempel-Ziv (LZ)
compression algorithm is the best known

— Build a dictionary (table) of variable-length strings that
are expected to find in the data

— Replace each of these string when it appears in the data
with the corresponding index to the dictionary

« For example, “compression” has the index 4978 in one
particular dictionary

— “compression” would be replaced by 4978

— “compression” requires /7 bits for encoding by 7-bit
ASCII

— If the dictionary has 25,000 words — it takes just 15 bits

Prof. Tsai 31

Lossless Compression Algorithms (DB)

 To find the dictionary, a solution is to adaptively define the
dictionary based on the contents of the data being
compressed

— The constructed dictionary has to be sent along with the
data

 Variation of LZ used to compress GIF images
— first reduce 24-bit color to 8-bit color
— treat common sequence of pixels as terms in dictionary
— not uncommon to achieve 10-to-1 compression (X3)

Prof. Tsai 32

Lempel-Ziv Codes

Algorithm:
Parse the input sequence into strings that have never appeared before.

For example.
The input sequence is 1011010100010.......... ;

Step 1:

« The algorithm first parses the first letter 1 and finds that it never appears before .
So 1 is the first string .

« Then the algorithm parses the second letter 0 and finds that it never appears before.
Thus, the algorithm puts it to be the next string .

« The algorithm parses the next letter 1, and finds that this string has appeared.
Hence, it parses another letter 1 and yields a new string 11.

» Repeat these procedures. The source sequence is parsed into strings as
1;0;11;01,;010;00; 10...........

33

« Step 2:

L = 8. So the indices will be:

parsed source : 1 O 1M1 01 010 00 10
index : 001 010 011 100 101 110 111

E.gQ.

the codeword of source string 010 will be the index of 01, (i.e. 100),
concatenated with the last bit of the source string, (i.e. 0).

« The codeword string is:
(000, 1)(000, 0)(001 , 1)(010, 1)(100, 0)(010, 0)(001, 0)
or equivalently,
0001 0000 0011 0101 1000 0100 0010

34

LLossy Compression

Prof. Tsali

Image Compression (JPEG)

« JPEG (Joint Photographic Experts Group): more than just
a compression algorithm

— It also define the format for images
« JPEG compression takes place in three phases:

— DCT (Discrete Cosine Transform): transforms the signal
Into an equivalent signal in the spatial frequency domain

— Quantization: loses the least significant information
contained in that signal

— Encoding: adds an element of lossless compression to the
lossy compression achieved by the first two phases
JPEG compression

Sauee . "BCT —» Guanizaion —» Encodng-

Prof. Tsai 36

: : cue
Fourier Series Formula 4

THE MATH EXPERT

f(x) = lzclo + 2,0 cos nx + 2 b sin nx

where,

=" f(x)d
ao'nf'" (x) dx

I N o
Q= nf_nf(x)cosnxdx

— 1 g '
bn_ - f_n f(x) sin nx dx

Prof. Tsai 37

Prof. Tsai 38

1D Quantization

Prof. Tsali

39

Image Compression (JPEG)

« DCT takes an 8 x 8 matrix of pixel values as input and
output an 8 x 8 matrix of frequency coefficients

« |If the value changes slowly, it has a low spatial frequency;
and If it changes rapidly, it has a high spatial frequency

— The low frequencies correspond to the gross features
— The high frequencies correspond to the fine detail

— The gross features are essential and the fine detall is less
essential

« Moving from low-frequency information to high-frequency
Information, the image becomes finer and finer detail

« The high-frequency coefficients are increasingly
unimportant to the perceived quality of the image

Prof. Tsai 40

Image Compression (JPEG)

« Low spatial frequency: the value changes slowly

« High spatial frequency: the value changes rapidly

Prof. Tsali 41

DCT (Discrete Cosine Transform)

=

N —

[y

DCT(,) = ﬁC(i)C(j)iZ; pixel(x,y)cos[(zsz\ll)iﬂ]cos

x=0y=

pixel(i, j) _WNZO

H

N-1

j=0

1

/2 ifx=0
C(x) =

1

ifx>0

Fourier Cosine Transforms

f; () = \/gj'ff (X) cos awxdx

f(x) = Ej:f(a))cos wxd

C(i)C(j)DCT (i, j)cos[(ZXZT\Il)i”]cos

[(2y +1)j7r]
2N

[(2y +1)j7r]
2N

42

Quantization equation

QuantizedV alue(l,) = IntegerRound (DCT (i,) /Quantum(i, |))

where
[x+0.5] if x>0

IntegerRound(X) = { [x—0.5] if x<0

Decompression

DCT (i,) = QuantizedV alue(i, j) x Quantum (i, j)

43

Image Compression (JPEG)

« DCT does not lose information: just transforms the image
Into another form for information removing

» Quantization: a matter of dropping the insignificant bits of
the frequency coefficients

« The low coefficients have a quantum close to 1
— Little low-frequency information is lost
« The high coefficients have larger values of quantums

— Many high coefficients end up being set to O after

i7ati 3 5 7 9 11 13 15 17|
quantization 5 (7 9 11 13 15 17 19

/ 9 11 13 15 17 19 21
Quantization Table Quantum = 9 11 13 15 17 19 21 23
Quantum step (11 13 15 17 19 21 23 25
8 x 8 13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

Prof. Tsai 44

Image Compression (JPEG)

« The final phase of JEPG encodes the quantized frequency
coefficients in a compact form — a lossless compression

« Starting with the DC coefficient in position (0, 0), the
coefficients are processed in the zigzag sequence

* RLE is applied to only the 0 coefficients
— Many of the later coefficients are O
« The coefficient values are encoded using a Huffman code

 Aimage contains a large number -
of 8 x 8 blocks DC coefficient

— Each DC coefficient i1s encoded as 7
the difference from the previous /

/
DC coefficient High_frequency ///

coefficients: ‘0’: & |

Prof. Tsali 45

Image Compression (JPEG)

« Foracolor image, there are many different representations
for each pixel to choose from

— RGB: represents each pixel with three color components
* Red, Green and Blue

— YUV: has three components: one luminance (brightness)
(YY) and two chrominance (U and V)

Prof. Tsali 46

Original; 49KB Compression rate 9, 6KB

Prof. Tsali 47

Original; 49KB Compression rate 12, 4KB

Prof. Tsali 48

Original; 49KB Compression rate 20, 3KB

Prof. Tsali 49

Original Image

Prof. Tsali

50

Pixel Values of Original Image

63 60 69 64 064 59 66 50 63 S1 TS5 54 54 69 59 56
62 66 79 52 72 54 69 o66) 65 75 U1 56 55 51 65 &0
62 67 59 53 80 79 19 69) 65 62 66 T8 T8 54 63 60
7278 69 77 70 70 56 58) 52 63 55 68 74 62 66 63
53 58 66 51123 129 108 115|127 102 121} 71 63 74 61 54
61 59 77 7T6|154 136 138 124|128 140 109} 76 58 55 70 66
73 68 68 64118 129 99 100|133 89 104} 65 69 50 77 52
54 77 68 57T|120 94 143 89128 114 147} 60 80 76 76 63
70 72 65 80 91 152 150 103 | 88 156 93| 62 69 57 66 352
57T 56 79 67128 159 135 83101 139 107}y 53 57 62 79 67
7253 60 561135 123 111 110|147 109 94f 66 74 71 68 50
58 72 56 77 60 60 69 56 70 62 63 8 50 77 50 69
64 73 53 72 63 69 69 54| 68 52 69 60 74 Tl 55 62
76 58 70 76 65 60 50 S1) 62 77 58 60 56 54 64 60
75 76 68 55 54 69 T4 58|79 63 63 T4 56 67 69 58
64 69 75 66 8 66 77 73| 75 59 57 54 80 T1 54 65

Prof. Tsali 51

Image Matrix after DCT Transformation

391 92 21 47 -16 30 -6 414260 95 32 -11 -20 7T 14 32
98 81 10 -36 6 18 g8 -17) -8 82 28 4 19 -6 9 25
-18 15 5 -8 -10 16 -18 14 3 1 9 2 -12 3 18 19
39 38 -4 11 10 -6 19 50 13 35 25 1 -11 0 6 9

20 14 1 -7 -6 7 -11 -5 21 -17 § -16 -2 25

-18 39 5 3 9 7 9 27)-3 -28 -17 15 17 11 -I3 0
18 25 -6 T -2 7 o -17 11y 15 11 8 4 -6 -1 -4 -]
-2 -23 717 -5 -12 12 -3 6 17 -8 11 5 18 19 12

412 66 -18 52 -25 4 4 645 74 30 11 -20 -15 4 -2
92 92 -17 51 -23 -1 6 21 61 68 20 -14 -39 -21 -19
58 43 317 27 5 9 81 22 25 13 422 23 -25
-13 23 6 -4 -11 22 1 -25y-19 -10 -8 -22 ~-17 -13 -24 4
-8 14 10 22 4 11 21 22 -22 -25 -24 -1 11 -I5 8
-4 13 24 -11 0 6 -7 -12]| 3 4 -6 1 7 15 -3
11 9 3 2 2 -6 7 8 5 19 4 14 7 8 -8 7
17 20 16 14 0 -10 -2 41 17 17 220 8 7 7

Prof. Tsai 52

Quantization Matrix

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 02
18 22 37 56 68 109 103 7T
24 35 55 64 31 104 113 92
49 04 78 87 103 121 120 101
72 92 95 98 112 100 103 99

e e
Prof. Tsai 53

Image Matrix after Quantization

54

Prof. Tsali

10N

Iminat

Image Matrix after El

55

Prof. Tsali

Image Matrix after Reconstruction (DCT)

o O O O (@) o O O O O
o O O O () O O O O O
o O O O (@) o O O O O
%OOO (-} O O O O O
1

O O O O (@) O O O O O
4|_‘ —

O o0 O AN (@) O oo O O O
3@12 N AN

AN < O < (@) -~ N O O O
90@ N ~ >~ A

AN <t O <+ o0 oo O oo <F O
o OO — <t <t O O
<~ _ ~ _

1 1

o O O O (@) o O O O O
S O O O () o O O O O
o O O O (@) o O O O O
%OOO (-} O O O O O
1

o0 oo O O (@) oo ™~ O O O
43 <t W

o T O O (@) O < O O O
Q Q=

oo <t oNn <t (@) O O O I~ O
% 00 = NS
< O <t A (@) O O O <t oo
o0 O\ — <t — O\ W —
3- 4 | I |
1 1

56

Prof. Tsali

Image Matrix after Reconstruction

62 69 69 63 61 67 67 62| 62 66 62 50 45 52 58 58
67 72 71 64 63 67 65 57| 62 72 74 68 65 71 73 IO
68 71 69 64 66 T1 67 56| 49 61 68 65 63 65 64 58
63 65 65 67 78 89 8 T1| 63 T2 T4 66 59 59 57 5l
62 o4 67 77 99 117 114 99111 113 103 8 70 69 68 64
67 68 71 87 117 139 134 116130 126 108 80 62 61 63 6l
69 66 68 84 115 137 128 107)122 118 99 72 54 53 56 55
66 61 60 74 104 124 111 87127 125 110 &8 70 70 72 71
70 57 56 84 124 145 133 112|135 120 98 79 68 62 59 57
7260 59 84 121 139 128 109|126 113 93 77 68 64 62 61
70 60 58 77 105 119 109 93110 99 &4 72 67 66 65 64
65 57 54 65 81 & T8 66| 90 82 T2 65 64 65 65 64
66 61 58 60 65 64 56 48| 74 68 62 60 61 63 63 6l
71 70 68 66 63 58 54 SI) 67 63 59 59 62 63 62 60
69 72 74 71 65 61 62 64| 68 65 63 64 66 67 64 6l
63 69 73 71 65 63 68 73| 71 69 67 68 71 Tl 67 63

Prof. Tsai 57

Compression Error Matrix

-10

20

10
11

-15

12
-13

11 -4 -8 -12 -13 -16 -1
19 28 11

10

13

-10

-13

-9

S VW o o0 N O <t
— 1 o —
- >~ — < >~ > o
N b —
1 1
- <t n O~ I~
—_— =]
I
AN <t N <t O
— AN — A
O —=H WV ™~ n < O
— 11 N — —
1 1 o
— <t O — O O O
— = N — N AN
1 [D |
O N —= — [~ ¥ I~
SR A A
O O ™~ a4 O O I~
4|_L_ 1 24|_A
O < O O ™~ [~ A
I NN —
R
AN N oo O >~ O <
4 3_A/_~_
- -~ on O on —~ O
Qs T ®
O — O >~ < >~
AN — AN — N
— O O o0 O O AN
1 N s L
1
O O AN O n <+ I~
o
AN O I AN O wn A
I — e |

20 20 9 -I5 14 -12 15

10

-120 21 27

-12

-15
-12

10

-10
14

-11

-12

11

16

10

10

58

Prof. Tsali

Comparison of Reconstruction Image

Original image Compression image

Prof. Tsali

Video Compression (MPEG)

 MPEG (Moving Picture Experts Group): a moving picture
can be simply approximated as a succession of still images
(frames) displayed at some video rate

« Each of these frames can be compressed using the same
DCT-based technique used in JPEG

— Stopping at this point would be a mistake

» Two successive frames of video will contain plenty of
Identical information

— It i1s unnecessary to send the same information twice

— Should remove the inter-frame redundancy present in a
video sequence

« MPEG takes this inter-frame redundancy into consideration

Prof. Tsai 60

Video Compression (MPEG)

« MPEG takes a sequence of video frames as input and
compresses them into three types of frames

— | frames (intrapicture)
— P frames (predicted picture)
— B frames (bidirectional predicted picture)
« Each frame i1s compressed into one of these three frame types

Itnput Frame 1 [Frame 2| |Frame 3 Fram114 Frame 5 |Frame 6| Frame 7
Stream
Forward MPEG
prediction compr(issmn
s —
Cosr?r%raerised | frame | | B frame| | B frame| |P frame | |B frame| |B frame | | | frame
\ —
Bidirectional
prediction

Prof. Tsai 61

Video Compression (MPEG)

| frames can be thought of as reference frames

— Self-contained: depending on neither earlier frames nor
later frames

— An | frame is simply the JPEG compressed version of
the corresponding frame in the video source

« P and B frames are not self-contained
— Specify relative differences from some reference frame

— P frame: specifies the differences from the previous |
frame

« Depends on the preceding | frame

Prof. Tsali 62

Video Compression (MPEG)

— B frame: gives an interpolation between the previous and
subsequent | or P frames

» Depends on both the preceding | or P frame and the
subsequent | or P frame

« Because each B frame depends on a later frame in the
sequence

— The compressed frames are not transmitted in
sequential order

— The sequence “I B B P B B I” is transmitted as
c“IPBBIBB”

Prof. Tsai 63

Video Compression (MPEG)

« MPEG does not define the ratio of | frames to P and B
frames

— This ratio may vary depending on the required
compression and picture quality

« Since MPEG coding Is very expensive, it is normally done
offline (not In real time)

— For example, in a video-on-demand system, the video
would be encoded and stored on disk ahead of time

« MPEG works | frames in units of 16x16 macroblocks

« The P and B frames are also processed in units of
macroblocks

Prof. Tsai 64

Video Compression (MPEG)

» (Motion estimation) The information captures the motion of
each macroblock

— It shows in what direction and how far the macroblock
moved relative to the reference frames

« |If the motion picture is changing too rapidly

— It makes sense to give the intrapicture encoding rather
than a forward- or backward-predicted encoding

— A B frame can use the same intracoding as is used In
an | frame (no prediction is required)

— Each macroblock in a B frame includes a type field that
Indicates which encoding is used for that macroblock

« MPEG typically achieves a compression ratio of 90-to-1

Prof. Tsai 65

Audio Compression (MP3)

« MPEG also defines a standard for compressing audio
« CD-quality audio is for high-quality audio
— Sampling rate: 44.1 KHz (23 ps per sample)
— Each sample is encoded by 16 bits
— For a stereo (2-channel) audio stream, the rate is 1.41Mbps

» For telephone-quality voice: it has an 8 KHz sampling rate
with 8-bit per sample = 64 Kbps

« Some amount of compression is going to be required to
transmit CD-quality audio over a 128-Kbps ISDN line pair

It Is assumed that 49 bits are used to encode each 16-bit sample
— Including synchronization and error correction overhead
— Actual bit rate is 49/16 x 1.41 Mbps = 4.32 Mbps

Prof. Tsai 66

Audio Compression (MP3)

« MPEG defines three layers of compression
— Layer 11 is widely known as MP3

« MP3 uses techniques that are similar to those used by MPEG
to compress video

— Splits the audio stream into several frequency subbands
— Each subband is broken into a sequence of blocks

— Each block is transformed using a modified DCT
algorithm, quantized, and Huffman encoded

Coding Bit Rates Compression Factor
Layer | 384 Kbps 4
Layer Il 192 Kbps 8
Layer Il 128 Kbps 12

Prof. Tsai 67

