
Prof. Tsai

Chapter 7

End-to-End Data

Prof. Tsai 2

End-to-End Data

• Discuss the problem of how to best encode different kinds of

data that application programs want to exchange

– Let the receiver be able to extract the same message from

the signal as the transmitter sent

• The two sides agreeing to a message format, called

the presentation format

• To make the encoding as efficient as possible

– In one hand, add as much redundancy in the data as

possible  The receiver can extract the right data even if

errors are introduced into the message (error correction)

– In the other hand, remove as much redundancy from the

data as possible  the message is encoded as few bits as

possible (data compression)

Prof. Tsai

Presentation Formatting

Prof. Tsai 4

Presentation Formatting

• Encoding: the sender translates the data from the

representation it uses internally into a message that can be

transmitted over the network (argument marshalling)

– Such as “Image  Message” or “Voice  Message”

• Decoding: the receiver translates the arriving message into a

representation that it can then process (unmarshalling)

– Such as “Message  Image” or “Message  Voice”

Presentation
encoding

Application data

Presentation
decoding

Message Message Message

Application data

…

Prof. Tsai 5

Presentation Formatting (Problems)

• Computers represent data in different ways

– Big-endian form versus little-endian form

• Application programs are written in different languages

– Even when they are using the same language, there may

have more than one complier

 We cannot simply transmit a structure from one machine to

another

(126)(34)(17)(2)

00000010Big-endian

Little-endian

(2)(17)(34)(126)

Low address High address

0001000100100010 01111110

01111110 001000100001000100000010

Integer

34,677,374

High Low

HighLow

Prof. Tsai 6

Data Types

• The data type system includes three levels

• The lowest level: base types, including integers, floating-

point numbers and characters; might also support ordinal

types and booleans

– Converts each base type from one representation to

another (such as from big-endian to little-endian)

• The next level: flat types, including structures and arrays

– The compiler sometimes insert padding between fields

– The marshalling system packs structures with no padding

• The highest level: complex types, built using pointers

– The data might not be contained in a single structure

(involves pointer from one structure to another)

Prof. Tsai 7

Data Types

• The task of argument marshalling usually involves

– Converting the base types,

– Packing the structures, and

– Linearizing the complex data structures

Argument marshaller

Application data structure

Prof. Tsai 8

Conversion Strategy

• There are two general options of conversion strategy

• Canonical intermediate form:

– The sender translates from its internal representation to

an external representation before sending data

– The receiver translates from this external representation

into its local representation when receiving data

• Receiver-makes-right:

– The sender transmit data in its own internal format

– The receiver is responsible for translating the data from

the sender’s format into its local format

– Every host must be prepared to convert data from all

other machine architectures

Prof. Tsai 9

Conversion Strategy

• Receiver-makes-right is an N-by-N solution

– Each of N machine architectures must be able to handle

all N architectures

• For canonical intermediate form, each host needs to know

only how to convert between its own representation and the

external one

• Is the canonical intermediate form the best choice?

– The number of machine architectures N is not so large

– The most common case is for two machines of the same

type to be communicating with each other

• A third option is to use receiver-makes-right if the sender

and destination has the same architecture, and use

canonical intermediate form if they are different

Prof. Tsai 10

Tags

• How to let the receiver know what kind of data is contained

in the message?

– Two approaches: tagged and untagged data

• A tag is any additional information included in a message

– Type tag: indicates that the value is an integer, a floating-

point number, or whatever

– Length tag: indicates the number of elements in an array

or the size of an integer

– Architecture tag: is used in conjunction with the

receiver-makes-right strategy to specify the architecture

type =

INT
len = 4 value = 417892

Prof. Tsai 11

Tags

• The alternative is not to use tags

– It knows because it was programmed to know

– If you call a remote procedure that takes two integers

and a floating-point number as argument

• The remote procedure does not need to inspect tags to

know what has just received

• It simply assumes that the message contains two

integers and a floating-point number

• The untagged data works for most cases

– Only breaks down for sending variable-length arrays

• A length tag is commonly used

Prof. Tsai 12

ASN.1 (Abstract Syntax Notation One)

• ASN.1 is an ISO standard that defines a representation for

data sent over a network

– Support the entire C type system (except function pointers)

– Define a canonical intermediate form

– Uses type tags

• The representation-specific part is called the Basic Encoding

Rules (BER)

• ASN.1 represents each data item with a triple of the form

<tag, length, value>

– The tag is typically an 8-bit field

– The length field specifies the length, in bytes, of the value

Prof. Tsai 13

ASN.1 (Abstract Syntax Notation One)

• Compound data types, such as structures, can be

constructed by nesting primitive types

• If the value is 127 or fewer bytes long, then the length is

specified in a single byte (the leading bit is set to ‘0’)

• If the value is 128 or more bytes long, then multiple bytes

are used to specify its length (the leading bit is set to ‘1’)

value

type typelength valuelength type valuelength

INT 4 4-byte integerA 32-bit integer

length0 k1 k containing length

1 byte length Multi-byte length

Prof. Tsai

Data Compression

Prof. Tsai 15

Compression

• How many bits do you need to represent a stream of binary
digits or a stream of alphabets?

– 11001101111000111100011000011111….

– Aabsndkjs dsjfjfdfjfjk fsdkja fas dsjfs aff …

• Entropy: the average number of bits needed for each symbol.

• Information theory: to find the fundamental limit

• Coding theory: to find ways to achieve the fundamental
limit

Prof. Tsai 16

Prof. Tsai

Entropy for Bernoulli random variables

17

Prof. Tsai 18

Data Compression

• Sometimes application programs need to send more data in a

timely fashion than the bandwidth of the network supports

– A 10-Mbps video stream wants to transmit over a network

with 1-Mbps available bandwidth

– First compress the data at the sender, then

– Transmit it over the network, and

– Finally to decompress it at the receiver

• Compression is inseparable from data encoding

– The Huffman codes

• Encode the data according to the relative probability of

each symbol

19

Huffman encoding algorithm

• First one parses through the stream of alphabets to find the
probability of each symbol.

• Combine the two least probable source symbols into a new single
symbol, whose probability is equal to the sum of the probabilities of
the original two. Thus we have to encode a new source alphabet of
one less symbol. Repeating this step until we get down to the
problem of encoding just two symbols in a source alphabet, which
can be encoded merely using 0 and 1.

• Go backward by splitting one of the two (combined) symbols into
two original symbols, and the codewords of the two split symbols is
formed by appending 0 for one of them and 1 for the other from the
codeword of their combined symbol. Repeating this step until all the
original symbols have been recovered and obtained a codeword.

Prof. Tsai 20

Huffman Coding

• A high probability symbol is assigned a short codeword

• A low probability symbol is assigned a long codeword

Symbol Stage 1 Stage 2 Stage 3 Stage 4 Symbol Codeword

S0

S1

S2

S3

S4

0.4

0.2

0.2

0.1

0.1

0.4

0.2

0.2

0.2

0.4

0.4

0.2

0.6

0.4

0

1

0

1

0

1

0

1

S0

S1

S2

S3

S4

00

10

11

010

011

Prof. Tsai

The tree of the Huffman encoding

21

Prof. Tsai 22

Data Compression

• There are two classes of compression algorithms

– Lossless compression: ensures that the data recovered

from the compression/decompression process is exactly

the same as the original data

• Used to compress file data, such as executable codes,

text files and numeric data

– Lossy compression: does not promise that the data

received is exactly the same as the data sent

• Removes information that it cannot later be restored

• The lost information will not miss the reception

• Used to compress still images, video, and audio

• The lossy algorithms achieve much better compression ratios

Prof. Tsai

The rate-distortion theory

• Lossy compression always

involves a tradeoff between rate

and distortion.

• Rate is the average number of

bits required to represent each

source symbol.

• Within this framework, the

tradeoff between rate and

distortion is represented in the

form of a rate-distortion

function R(D).

23

Prof. Tsai 24

Data Compression

• Compression/decompression algorithms often involve time-

consuming computations

• Is the compression beneficial?

– Bc: denotes the average bandwidth at which data can be

pushed through the compressor and decompressor

– Bn: denotes the network bandwidth (including network

processing costs) for uncompressed data

– r: denotes the average compression ratio

– The time taken to send x bytes of uncompressed data is

x / Bn

Prof. Tsai 25

Data Compression

– The time to compress it and send the compressed data is

• compression time + transmission time

• x / Bc + x / (r Bn)

– The compression is beneficial if

x/Bc + x / (r Bn) < x/Bn

 Bc > r / (r – 1)  Bn

– If r = 2, Bc > 2  Bn

Prof. Tsai

Lossless Compression

Prof. Tsai 27

Lossless Compression Algorithms (RLE)

• Run Length Encoding (RLE) is a compression technique

with a brute-force simplicity

– Replace consecutive occurrences of a given symbol with

• one copy of the symbol, plus a count of the repetition

– AAABBCDDDD  3A2B1C4D

• RLE can be used to compress digital image by comparing

adjacent pixel values and then encoding only the changes

– Same adjacent pixel values  the encoding value is ‘0’

– Large homogeneous regions  a large amount of

consecutive ‘0’

– For images having large homogeneous regions 

effective

Prof. Tsai 28

Lossless Compression Algorithms (RLE)

• For text images, they contain a large amount of white space

that can be removed

– RLE is a key algorithm used to transmit faxes

• RLE is not effective for images with a small degree of local

variation

– It may takes 2 bytes to represent a single symbol when

that symbol is not repeated

Prof. Tsai 29

Lossless Compression Algorithms (DPCM)

• Differential Pulse Code Modulation (DPCM):

– First output a reference symbol and then,

– For each symbol, to output the difference between that

symbol and the reference symbol

– AAABBCDDDD  takes A as the reference

• A0001123333

• When the differences are small, they can be encoded with

fewer bits than the symbol itself

Prof. Tsai 30

Lossless Compression Algorithms (DPCM)

• DPCM works better than RLE for most digital image

– The dynamic range of “the differences between adjacent

pixel values” is significantly less than that of the original

image

– A compression ratios of 1.5-to-1 can be obtained on

digital images

• Another approach is delta encoding:

– AAABBCDDDD  A001011000

• It is possible to perform RLE after delta encoding

– Since the output generally has consecutive occurrences of

a given symbol

Prof. Tsai 31

Lossless Compression Algorithms (DB)

• For Dictionary-Based (DB) methods, the Lempel-Ziv (LZ)

compression algorithm is the best known

– Build a dictionary (table) of variable-length strings that

are expected to find in the data

– Replace each of these string when it appears in the data

with the corresponding index to the dictionary

• For example, “compression” has the index 4978 in one

particular dictionary

– “compression” would be replaced by 4978

– “compression” requires 77 bits for encoding by 7-bit

ASCII

– If the dictionary has 25,000 words  it takes just 15 bits

Prof. Tsai 32

Lossless Compression Algorithms (DB)

• To find the dictionary, a solution is to adaptively define the

dictionary based on the contents of the data being

compressed

– The constructed dictionary has to be sent along with the

data

• Variation of LZ used to compress GIF images

– first reduce 24-bit color to 8-bit color

– treat common sequence of pixels as terms in dictionary

– not uncommon to achieve 10-to-1 compression (x3)

33

Lempel-Ziv Codes

Algorithm:

Parse the input sequence into strings that have never appeared before.

For example.

The input sequence is 1011010100010……….;

Step 1:

• The algorithm first parses the first letter 1 and finds that it never appears before .

So 1 is the first string .

• Then the algorithm parses the second letter 0 and finds that it never appears before.

Thus, the algorithm puts it to be the next string .

• The algorithm parses the next letter 1, and finds that this string has appeared.

Hence, it parses another letter 1 and yields a new string 11.

• Repeat these procedures. The source sequence is parsed into strings as

1 ; 0 ; 11 ; 01 ; 010 ; 00 ; 10 ………..

34

• Step 2:

L = 8. So the indices will be:

parsed source : 1 0 11 01 010 00 10 ….

index : 001 010 011 100 101 110 111

E.g.

the codeword of source string 010 will be the index of 01, (i.e. 100),

concatenated with the last bit of the source string, (i.e. 0).

• The codeword string is:

(000 , 1)(000 , 0)(001 , 1)(010 , 1)(100 , 0)(010 , 0)(001 , 0)

or equivalently,

0001 0000 0011 0101 1000 0100 0010 ……..

Prof. Tsai

Lossy Compression

Prof. Tsai 36

Image Compression (JPEG)

• JPEG (Joint Photographic Experts Group): more than just

a compression algorithm

– It also define the format for images

• JPEG compression takes place in three phases:

– DCT (Discrete Cosine Transform): transforms the signal

into an equivalent signal in the spatial frequency domain

– Quantization: loses the least significant information

contained in that signal

– Encoding: adds an element of lossless compression to the

lossy compression achieved by the first two phases

Source
image

JPEG compression

DCT Quantization Encoding Compressed
image

Prof. Tsai 37

Prof. Tsai 38

Prof. Tsai

1D Quantization

39

Prof. Tsai 40

Image Compression (JPEG)

• DCT takes an 8  8 matrix of pixel values as input and

output an 8  8 matrix of frequency coefficients

• If the value changes slowly, it has a low spatial frequency;

and if it changes rapidly, it has a high spatial frequency

– The low frequencies correspond to the gross features

– The high frequencies correspond to the fine detail

– The gross features are essential and the fine detail is less

essential

• Moving from low-frequency information to high-frequency

information, the image becomes finer and finer detail

• The high-frequency coefficients are increasingly

unimportant to the perceived quality of the image

Prof. Tsai 41

Image Compression (JPEG)

• Low spatial frequency: the value changes slowly

• High spatial frequency: the value changes rapidly

42

DCT (Discrete Cosine Transform)

]
)(

cos[]
)(

cos[),()()(),(
N

jy

N

ix
yxpixeljCiC

N
jiDCT

N

x

N

y 2

12

2

12

2

1 1

0

1

0

 
 









]
)(

cos[]
)(

cos[),()()(),(
N

jy

N

ix
jiDCTjCiC

N
jipixel

N

i

N

j 2

12

2

12

2

1 1

0

1

0

 
 

















)(xC

if x = 0

if x > 0

2

1

1

Fourier Cosine Transforms





0

2
xdxxff

c



 cos)()(

^





0

2



xdfxf cos)()(

^

43

Quantization equation

)),(/),((),(jiQuantumjiDCTndIntegerRoujialueQuantizedV 





)(xndIntegerRou

where

 

 50

50

.

.





x

x

0

0





x

xif

if

Decompression

),(),(),(jiQuantumjialueQuantizedVjiDCT 

Prof. Tsai 44

Image Compression (JPEG)

• DCT does not lose information: just transforms the image

into another form for information removing

• Quantization: a matter of dropping the insignificant bits of

the frequency coefficients

• The low coefficients have a quantum close to 1

– Little low-frequency information is lost

• The high coefficients have larger values of quantums

– Many high coefficients end up being set to 0 after

quantization



























3129272523211917
2927252321191715
2725232119171513
2523211917151311
232119171513119
21191715131197
1917151311975
171513119753

Quantum
Quantization Table

Quantum step

8  8

Prof. Tsai 45

Image Compression (JPEG)

• The final phase of JEPG encodes the quantized frequency

coefficients in a compact form  a lossless compression

• Starting with the DC coefficient in position (0, 0), the

coefficients are processed in the zigzag sequence

• RLE is applied to only the 0 coefficients

– Many of the later coefficients are 0

• The coefficient values are encoded using a Huffman code

• A image contains a large number

of 8  8 blocks

– Each DC coefficient is encoded as

the difference from the previous

DC coefficient

DC coefficient

High-frequency
coefficients: ‘0’

Prof. Tsai 46

Image Compression (JPEG)

• For a color image, there are many different representations

for each pixel to choose from

– RGB: represents each pixel with three color components

• Red, Green and Blue

– YUV: has three components: one luminance (brightness)

(Y) and two chrominance (U and V)

Prof. Tsai 47

Lena

Original; 49KB Compression rate 9, 6KB

Prof. Tsai 48

Lena

Original; 49KB Compression rate 12, 4KB

Prof. Tsai 49

Lena

Original; 49KB Compression rate 20, 3KB

Prof. Tsai 50

Original Image

Prof. Tsai 51

Pixel Values of Original Image

65547180545759757377668066756964

58696756746363795874695455687675

60645456605877625150606576705876

62557174606952685469696372537364

69507750806362705669606077567258

50687174669410914711011112313556605372

67796257531071391018313515912867795657

526657696293156881031501529180657270

6376768060147114128891439412057687754

5277506965104891331009912911864686873

667055587610914012812413813615476775961

546174637112110212711510812912351665853

63666274685563525856707077697872

60635478786662656979798053596762

80655155567175656669547252796662

56596954547551635066596464696063

65547180545759757377668066756964

58696756746363795874695455687675

60645456605877625150606576705876

62557174606952685469696372537364

69507750806362705669606077567258

50687174669410914711011112313556605372

67796257531071391018313515912867795657

526657696293156881031501529180657270

6376768060147114128891439412057687754

5277506965104891331009912911864686873

667055587610914012812413813615476775961

546174637112110212711510812912351665853

63666274685563525856707077697872

60635478786662656979798053596762

80655155567175656669547252796662

56596954547551635066596464696063

Prof. Tsai 52

Image Matrix after DCT Transformation

1777820-217174-2-1001416-2017

7-8-8714419587-626-23-911

-21-31571-64-3-12-760-112413-14

-88-1511-1-24-25-22-22-2111-4-221014-18

-4-24-13-17-22-8-10-19-25122-11-4623-13

8-25-23-22-4132522895-27173-4358

2-19-21-39-1429686126-1-2351-17-9292

-2-4-15-20113074-4556-44-2552-18-66-412

121918511-8176-312-12-5177-23-2

-7-4-7-6-4-8111511-177-27-6-2518

0-13111715-17-28-36-279793-539-18

525-2-168-17-72-5-117-6-7114-20

-966-111253513519-61011-14-3839

19183-12-291314-1816-10-8515-18

-25-9-619-4-28-82-87-178186-361081-98

32147-20-113295-42641-6-30-1647-21-92-391

1777820-217174-2-1001416-2017

7-8-8714419587-626-23-911

-21-31571-64-3-12-760-112413-14

-88-1511-1-24-25-22-22-2111-4-221014-18

-4-24-13-17-22-8-10-19-25122-11-4623-13

8-25-23-22-4132522895-27173-4358

2-19-21-39-1429686126-1-2351-17-9292

-2-4-15-20113074-4556-44-2552-18-66-412

121918511-8176-312-12-5177-23-2

-7-4-7-6-4-8111511-177-27-6-2518

0-13111715-17-28-36-279793-539-18

525-2-168-17-72-5-117-6-7114-20

-966-111253513519-61011-14-3839

19183-12-291314-1816-10-8515-18

-25-9-619-4-28-82-87-178186-361081-98

32147-20-113295-42641-6-30-1647-21-92-391

Prof. Tsai 53

Quantization Matrix

9910310011298959272

10112012110387786449

921131048164553524

771031096856372218

6280875129221714

5669574024161314

5560582619141212

6151402416101116

9910310011298959272

10112012110387786449

921131048164553524

771031096856372218

6280875129221714

5669574024161314

5560582619141212

6151402416101116

Prof. Tsai 54

Image Matrix after Quantization

0000000000000000

0000000000000000

000000000000000-1

00000-1-1-10000001-1

0000-10-1-10000001-1

000-10122000-110-34

000-2-1265000-13-1-88

000-1137-28000-13-2-6-26

0000000000000000

0000000000000000

000000-1-20000001-1

000000000000001-1

0000012100000-1-23

000001000000001-1

00010-2-7-70000-217-8

100-1-139-2710-1-13-2-8-24

0000000000000000

0000000000000000

000000000000000-1

00000-1-1-10000001-1

0000-10-1-10000001-1

000-10122000-110-34

000-2-1265000-13-1-88

000-1137-28000-13-2-6-26

0000000000000000

0000000000000000

000000-1-20000001-1

000000000000001-1

0000012100000-1-23

000001000000001-1

00010-2-7-70000-217-8

100-1-139-2710-1-13-2-8-24

Prof. Tsai 55

0000000000000000

0000000000000000

0000000000000000

000000000000000-1

0000000-10000001-1

00000022000000-34

0000026500003-1-88

0000137-2800003-2-6-26

0000000000000000

0000000000000000

0000000-200000000

000000000000000-1

00000121000000-23

000001000000001-1

00000-2-7-70000-217-8

000-1-139-27000-13-2-8-24

0000000000000000

0000000000000000

0000000000000000

000000000000000-1

0000000-10000001-1

00000022000000-34

0000026500003-1-88

0000137-2800003-2-6-26

0000000000000000

0000000000000000

0000000-200000000

000000000000000-1

00000121000000-23

000001000000001-1

00000-2-7-70000-217-8

000-1-139-27000-13-2-8-24

Image Matrix after Elimination

Prof. Tsai 56

Image Matrix after Reconstruction (DCT)

0000000000000000

0000000000000000

0000000000000000

000000000000000-18

0000000-1400000017-14

0000002628000000-3956

00000287260000057-14-9696

0000163077-448000048-20-66-416

0000000000000000

0000000000000000

0000000-4800000000

000000000000000-18

00000223414000000-3442

00000160000000013-14

00000-28-84-840000-381484-96

000-24-163099-432000-2448-20-88-384

0000000000000000

0000000000000000

0000000000000000

000000000000000-18

0000000-1400000017-14

0000002628000000-3956

00000287260000057-14-9696

0000163077-448000048-20-66-416

0000000000000000

0000000000000000

0000000-4800000000

000000000000000-18

00000223414000000-3442

00000160000000013-14

00000-28-84-840000-381484-96

000-24-163099-432000-2448-20-88-384

Prof. Tsai 57

Image Matrix after Reconstruction

63677171686769717368636571736963

61646766646365686462616571747269

60626362595963675154586366687071

61636361606268744856646560586166

64656564657282906678878165545765

646566677284991109310911910577586070

61626468779311312610912813912184596072

57596268799812013511213314512484565770

71727070851101251278711112410474606166

55565354729911812210712813711584686669

616361628010812613011613413911787716867

6468697083103113111991141179977676462

51575959667472637184897867656563

58646563656861495667716664697168

70737165687472625765676364717267

58585245506266626267676163696962

63677171686769717368636571736963

61646766646365686462616571747269

60626362595963675154586366687071

61636361606268744856646560586166

64656564657282906678878165545765

646566677284991109310911910577586070

61626468779311312610912813912184596072

57596268799812013511213314512484565770

71727070851101251278711112410474606166

55565354729911812210712813711584686669

616361628010812613011613413911787716867

6468697083103113111991141179977676462

51575959667472637184897867656563

58646563656861495667716664697168

70737165687472625765676364717267

58585245506266626267676163696962

Prof. Tsai 58

Compression Error Matrix

-2130-9141010-40-9-3-155-20-1

3-5010-1002-116-12-811166-4-6

0-296-11-14504-2-2-10-212-5

-18-8-130-7166-6-13-52-125-122

-515-1214-15920201092721-12-2-157

14-3-5-76-10-10-37-17-2-4-3021-27-2

-6-1721124-14-262526-7-20-717-20415

5-75-1175-36479-17-7334-9-150

8-4-6-1025-3711-1-2-3230-1617-8-1612

3-213-157-529-117298-3200-2-4

-5-7644-1-142-8-43-3711-696

107-5712-1811-16-166-12-2426169

-12-9-3-15-2199111328198-10-4-13-9

-2111-15-132-1-16-13-12-8-14111046

-1082010123-3-3-9-413-912-865

2-1-17-9-4-1315-11218-3-109-1

-2130-9141010-40-9-3-155-20-1

3-5010-1002-116-12-811166-4-6

0-296-11-14504-2-2-10-212-5

-18-8-130-7166-6-13-52-125-122

-515-1214-15920201092721-12-2-157

14-3-5-76-10-10-37-17-2-4-3021-27-2

-6-1721124-14-262526-7-20-717-20415

5-75-1175-36479-17-7334-9-150

8-4-6-1025-3711-1-2-3230-1617-8-1612

3-213-157-529-117298-3200-2-4

-5-7644-1-142-8-43-3711-696

107-5712-1811-16-166-12-2426169

-12-9-3-15-2199111328198-10-4-13-9

-2111-15-132-1-16-13-12-8-14111046

-1082010123-3-3-9-413-912-865

2-1-17-9-4-1315-11218-3-109-1

Prof. Tsai 59

Original image Compression image

Comparison of Reconstruction Image

Prof. Tsai 60

Video Compression (MPEG)

• MPEG (Moving Picture Experts Group): a moving picture

can be simply approximated as a succession of still images

(frames) displayed at some video rate

• Each of these frames can be compressed using the same

DCT-based technique used in JPEG

– Stopping at this point would be a mistake

• Two successive frames of video will contain plenty of

identical information

– It is unnecessary to send the same information twice

– Should remove the inter-frame redundancy present in a

video sequence

• MPEG takes this inter-frame redundancy into consideration

Prof. Tsai 61

Video Compression (MPEG)

• MPEG takes a sequence of video frames as input and

compresses them into three types of frames

– I frames (intrapicture)

– P frames (predicted picture)

– B frames (bidirectional predicted picture)

• Each frame is compressed into one of these three frame types

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

I frame B frame B frame P frame B frame B frame I frame

MPEG
compressionForward

prediction

Bidirectional
prediction

Compressed
stream

Input
stream

Prof. Tsai 62

Video Compression (MPEG)

• I frames can be thought of as reference frames

– Self-contained: depending on neither earlier frames nor

later frames

– An I frame is simply the JPEG compressed version of

the corresponding frame in the video source

• P and B frames are not self-contained

– Specify relative differences from some reference frame

– P frame: specifies the differences from the previous I

frame

• Depends on the preceding I frame

Prof. Tsai 63

Video Compression (MPEG)

– B frame: gives an interpolation between the previous and

subsequent I or P frames

• Depends on both the preceding I or P frame and the

subsequent I or P frame

• Because each B frame depends on a later frame in the

sequence

– The compressed frames are not transmitted in

sequential order

– The sequence “I B B P B B I” is transmitted as

• “I P B B I B B”

Prof. Tsai 64

Video Compression (MPEG)

• MPEG does not define the ratio of I frames to P and B

frames

– This ratio may vary depending on the required

compression and picture quality

• Since MPEG coding is very expensive, it is normally done

offline (not in real time)

– For example, in a video-on-demand system, the video

would be encoded and stored on disk ahead of time

• MPEG works I frames in units of 1616 macroblocks

• The P and B frames are also processed in units of

macroblocks

Prof. Tsai 65

Video Compression (MPEG)

• (Motion estimation) The information captures the motion of

each macroblock

– It shows in what direction and how far the macroblock

moved relative to the reference frames

• If the motion picture is changing too rapidly

– It makes sense to give the intrapicture encoding rather

than a forward- or backward-predicted encoding

A B frame can use the same intracoding as is used in

an I frame (no prediction is required)

– Each macroblock in a B frame includes a type field that

indicates which encoding is used for that macroblock

• MPEG typically achieves a compression ratio of 90-to-1

Prof. Tsai 66

Audio Compression (MP3)

• MPEG also defines a standard for compressing audio

• CD-quality audio is for high-quality audio

– Sampling rate: 44.1 KHz (23 s per sample)

– Each sample is encoded by 16 bits

– For a stereo (2-channel) audio stream, the rate is 1.41Mbps

• For telephone-quality voice: it has an 8 KHz sampling rate

with 8-bit per sample  64 Kbps

• Some amount of compression is going to be required to

transmit CD-quality audio over a 128-Kbps ISDN line pair

• It is assumed that 49 bits are used to encode each 16-bit sample

– Including synchronization and error correction overhead

– Actual bit rate is 49/16  1.41 Mbps = 4.32 Mbps

Prof. Tsai 67

Audio Compression (MP3)

• MPEG defines three layers of compression

– Layer III is widely known as MP3

• MP3 uses techniques that are similar to those used by MPEG

to compress video

– Splits the audio stream into several frequency subbands

– Each subband is broken into a sequence of blocks

– Each block is transformed using a modified DCT

algorithm, quantized, and Huffman encoded

Coding Bit Rates Compression Factor

Layer I 384 Kbps 4

Layer II 192 Kbps 8

Layer III 128 Kbps 12

